Interro n°11

En priorité : jusqu'au 10.1.

- 1JG Exercice 1 Soit $n \ge 1$ et $P = (X-2)^n (X-3)^n$.
 - 1. Déterminer les coefficients de degrés 0, n et n-1 de P. Quel est son degré?
 - 2. Quelles sont les racines réelles de P?

R8A Exercice 2

- 1. Énoncer le théorème de division euclidienne dans $\mathbb{K}[X]$.
- 2. Déterminer le reste de la division euclidienne de X^n par X(X+1). Indication : Écrire la division euclidienne, et déterminer les coefficients du reste.

KIE Exercice 3

- 1. Pour $i, k \in \mathbb{N}$, donner sans justifier une expression de la dérivée i-ème $(X^k)^{(i)}$. Indication : Distinguer selon la valeur de i
- 2. Que dire de deux polynômes P, Q tels que $\forall k \in \mathbb{N}, P^{(k)}(0) = Q^{(k)}(0)$?
- W7I **Exercice 4** Soit $\theta \in \mathbb{R}$, avec $\cos \theta \neq \pm 1$. On admet que les racines de l'équation $X^2 2\cos \theta X + 1 = 0$ sont $e^{\pm i\theta}$.
 - 1. Quelles sont les suites complexes, puis réelles vérifiant la relation de récurrence $u_{n+2} 2\cos\theta u_{n+1} + u_n = 0$.
 - 2. Quelles sont les solutions complexes, puis réelles de l'équation $y'' 2\cos\theta y' + y = 0$?
- IQJ **Exercice 5** On considère la suite complexe définie par $z_0 = 1$ et $\forall n \in \mathbb{N}, z_{n+1} = \frac{i}{2}z_n + 1$.
 - 1. Pour $n \in \mathbb{N}$, déterminer une expression de z_n en fonction de n.
 - 2. Étudier la convergence de la suite (z_n) .
- PJJ **Exercice 6** Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue. On considère l'équation différentielle (E): y'' 2y' + y = f(t).
 - 1. Résoudre l'équation homogène associée.
 - 2. Déterminer une solution particulière de (E) dans les trois cas suivants :

(a)
$$f(t) = 1$$

(b)
$$f(t) = \cos 2t$$

(c)
$$f(t) = (\cos t)^2$$

3. On prend f(t) = 1. Déterminer l'unique solution de (E) vérifiant y(0) = y'(0) = 0.

61K Exercice 7

- 1. Soient $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k$. Rappeler l'expression du coefficient c_k de degré k de PQ.
- 2. En considérant le coefficient de degré n du développement de $(1+X)^{2n}=(1+X)^n(1+X)^n$, en déduire la valeur de la somme $\sum_{k=0}^{n} {n \choose k}^2$.
- I3M **Exercice 8** Déterminer les fonctions dérivables $y : \mathbb{R} \to \mathbb{R}$ vérifiant $\forall x \in \mathbb{R}, y'(x) = y(-x)$. Indication : Justifier que y' est dérivable.
- QVU **Exercice 9** Soit y une solution sur \mathbb{R}_+^* de l'équation différentielle $x^2y'' 2y = 0$, c'est-à-dire vérifiant $\forall x > 0$, $x^2y''(x) 2y(x) = 0$. Montrer que $z : t \mapsto y(e^t)$ est solution d'une équation différentielle linéaire d'ordre 2. En déduire l'expression de y.
- DSH Exercise 10 Soit $n \in \mathbb{N}$, on considère la relation (*): $\forall \theta \in \mathbb{R}$, $P(\cos \theta) = \cos(n\theta)$.
 - 1. Montrer l'unicité d'un polynôme P vérifiant (*).
 - 2. Montrer l'existence d'un polynôme P vérifiant (*). Dans la suite, on le note T_n .
 - 3. Montrer que pour tout $n, m \in \mathbb{N}$, $T_n \circ T_m = T_m \circ T_n$.
- YY7 **Exercice 11** \bigstar Soient $a, b \in \mathbb{C}$ avec $a \neq 0$ et (u_n) une suite vérifiant (E_1) : $\forall n, au_{n+2} + bu_{n+1} + cu_n = 0$. On fait l'hypothèse que l'équation caractéristique de la récurrence admet deux racines distinctes λ et μ .
 - 1. On suppose qu'il existe $\alpha, \beta \in \mathbb{C}$ tels que $\forall n, \alpha \lambda^n + \beta \mu^n = 1$. Montrer que $\lambda = 1$ ou $\mu = 1$.
 - 2. Soit $p \in \mathbb{N}^*$. Montrer que la suite (u_{pn}) vérifie une relation de récurrence linéaire homogène d'ordre 2 (E_p) . Préciser les racines de l'équation caractéristique de (E_p) .
 - 3. Déterminer une CNS sur λ, μ pour qu'il existe une suite (u_n) non nulle périodique vérifiant (E_1) .
- CF1 **Exercice 12** \bigstar Soit $\lambda > 1$, (u_n) une suite réelle et (v_n) vérifiant $\forall n, v_{n+1} = \lambda u_{n+1} u_n$.
 - 1. Pour $n \in \mathbb{N}$, déterminer une expression explicite de u_n en fonction des termes de la suite (v_n) .
 - 2. Montrer que si $v_n \to 0$, alors $u_n \to 0$.
 - 3. Montrer que (u_n) converge si et seulement si (v_n) converge.