Interro n°13

CEV Exercice 1

- 1. Donner la définition de l'uniforme continuité d'une fonction.
- 2. Montrer que $f: x \mapsto \sin \frac{1}{x^2+1}$ est uniformément continue sur \mathbb{R} . Indication : Calculer f'.
- 3. Énoncer le théorème de Heine.
- 4. Donner sans justifier un exemple d'une fonction continue non uniformément continue.
- LUA **Exercice 2** Déterminer la limite en 0 de $\frac{3\sin x x\cos x 2x}{\sin^3 x}$

Indication: Effectuer un $DL_3(0)$ du numérateur.

- ONK **Exercice 3** Déterminer un $DL_4(0)$ de $\ln(\cosh 2x)$, puis de $\cosh \left(\ln(\cosh 2x)\right)$.
- E4D **Exercice 4** Soit $f(x) = \frac{e^x}{1-x}$
 - 1. Déterminer un $DL_3(0)$ de f(x).
 - 2. Étudier la position au voisinage de 0 de la courbe de f par rapport à sa tangente en 0.

J4R Exercice 5

- 1. Pour tout $x \in \mathbb{R}$, montrer que l'équation $y^2 + \ln y = x$ admet une unique solution, notée $y(x) \in \mathbb{R}_+^*$.
- 2. Montrer que $x \mapsto y(x)$ est continue.
- 3. Justifier que $y(x) \xrightarrow[x \to +\infty]{} + \infty$. En déduire un équivalent simple de y(x), quand $x \to +\infty$.

TXN Exercice 6

- 1. Donner un développement limité en $+\infty$ de $\frac{1}{n+1}$ avec un terme d'erreur en $o(\frac{1}{n^2})$.
- 2. Déterminer un équivalent, quand $n \to +\infty$, de $e^{1/n} e^{1/(n+1)}$.
- SK7 **Exercice 7** On considère $f: x \mapsto \sqrt{\frac{x^3}{x-1}}$.

Indication: Il s'agit d'effectuer un DL en $+\infty$ (en $\frac{1}{x}$). Un $DL_1(0)$ de $\sqrt{1+u}$ suffit.

- 1. Montrer que $\frac{x^3}{x-1} = x^2 + x + 1 + o_{+\infty}(1)$.
- 2. Montrer que f admet une asymptotique oblique en $+\infty$.
- 600 **Exercice 8** Soit $f: \mathbb{R} \to \mathbb{R}$ continue et 1-périodique.
 - 1. Montrer que f admet un minimum et un maximum.
 - 2. Montrer que pour tout a > 0, il existe $c \in \mathbb{R}$ tel que f(c + a) = f(c).
- 7DH Exercice 9 Pour $x \in \mathbb{R}$, on pose $f(x) = \int_x^{x^2} \frac{\mathrm{d}t}{\sqrt{1+t^2}}$.
 - 1. Donner un $DL_2(0)$ de $\frac{1}{\sqrt{1+x}}$.
 - 2. Énoncer le résultat de primitivation d'un DL en 0, pour une fonction g continue.
 - 3. Déterminer un $DL_4(0)$ de f.
- ZA4 **Exercice 10** Pour $n \geqslant 1$, on considère les intégrales $I_n = \int_0^1 \frac{x^{2n}}{1+x^n} dx$ et $J_n = \int_0^1 \frac{x^{2n-1}}{1+x^n} dx$.
 - 1. Déterminer la limite de I_n .
 - 2. Calculer J_n .

Indication: Changement de variable.

- 3. Montrer que pour tout $n \in \mathbb{N}^*$, $|I_n J_n| \leq \frac{1}{2n(n+1)}$.
- 4. Déterminer un équivalent de I_n .
- ZHT **Exercice 11** Soit (u_n) une suite réelle. Montrer que si $u_n = o(\sqrt{n})$, on a $(1 + \frac{u_n}{n})^n \sim e^{u_n}$.
- M7Q **Exercice 12** La fonction $f: x \mapsto e^x x 1$ réalise une bijection de \mathbb{R}_- sur $[0, +\infty[$, de réciproque g_1 et une seconde de \mathbb{R}_+ sur $[0, +\infty[$, de réciproque g_2 .
 - 1. Déterminer un équivalent, quand $x \to 0^+$ de $g_1(x)$.
 - 2. Montrer que $h: x \mapsto g_1 \circ g_2^{-1}$ est dérivable sur \mathbb{R}_+ .
- OSE Exercice 13 \bigstar Soit $f: [0,1] \to \mathbb{R}$ continue. Étudier $\lim_{n \to +\infty} \frac{1}{n} \sum_{k=0}^{n} (-1)^k f\left(\frac{k}{n}\right)$.

Indication : Il est nécessaire d'utiliser un théorème du cours...

KUW **Exercice 14** \bigstar Soit $f : \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. Montrer que $\varphi : x \mapsto \sup f$ est continue.

Indication: Faire une disjonction, de deux cas, pour montrer la continuité en x₀.