Interro n°25

3MH **Exercice 1** Donner un exemple de trois entiers a, b, c premiers entre eux dans leur ensemble (c'est-à-dire pgcd(a, b, c) = 1), tels qu'aucune paire de ces entiers ne soient premiers entre eux.

Indication: Utiliser trois nombres premiers: 2,3,5.

- OT7 Exercice 2
 - 1. Démontrer que si H est un sous-groupe de \mathbb{Z} , alors il existe $\alpha \in \mathbb{N}$ tel que $H = \alpha \mathbb{Z}$.

Indication: $Si \ H \neq \{0\}$, introduire $\alpha = \min H \cap \mathbb{N}^*$. Justifier $\alpha \mathbb{Z} \subset H$, et pour l'inclusion réciproque, faire une division euclidienne.

Cet entier α est unique, puisque l'égalité $H = \alpha \mathbb{Z}$ implique $\alpha = 0$ si $H = \{0\}$, et $\alpha = \min H \cap \mathbb{N}^*$ sinon.

- 2. Soient $a, b \in \mathbb{Z}$, on considère l'unique entier $d \in \mathbb{N}$ tel que $a\mathbb{Z} + b\mathbb{Z} = d\mathbb{Z}$.
 - (a) Montrer que d est un diviseur de a et de b.
 - (b) Montrer que tout diviseur commun à a et b divise d.
- 1WK Exercice 3 Soient $A, B \in \mathcal{M}_n(\mathbb{R})$.
 - 1. Rappeler la formule donnant le déterminant d'une matrice $A \in \mathcal{M}_n(\mathbb{R})$.
 - 2. On note $C = A + iB \in \mathcal{M}_n(\mathbb{C})$ et C' = A iB. Comparer $d = \det C$ et $d' = \det C'$, justifier.
 - 3. Montrer que si AB = BA, alors $det(A^2 + B^2) \ge 0$.
- XMI Exercice 4
 - 1. Énoncer le théorème de Bézout dans \mathbb{Z} .
 - 2. Soient $a, b \in \mathbb{N}^*$ premiers entre eux et $c \in \mathbb{N}$. Montrer que $ab \mid c$ si et seulement si $a \mid c$ et $b \mid c$.

Indication : Identifier le sens facile. Pour l'autre, écrire la relation de Bézout, et la multiplier par c.

- GQU Exercice 5 Soit $M = \begin{pmatrix} 1 & \alpha & & 0 \\ & \ddots & \ddots & \\ 0 & & \ddots & \alpha \\ \alpha & 0 & & 1 \end{pmatrix}$.
 - 1. Calculer le déterminant de M.
 - 2. Déterminer, en fonction de $\alpha \in \mathbb{C}$, le rang de M.

Indication: Il suffit de distinguer det M = 0 ou non, il n'est pas utile d'expliciter les α dont on parle.

- F9I Exercice 6 ♣
 - 1. Soit $a \in \mathbb{N}$. Montrer que si $n \mid m$, alors $a^n 1 \mid a^m 1$.

Indication: Utiliser une factorisation de $x^n - 1$

- 2. Soit $n \ge 1$. Montrer que si $2^n 1$ est un nombre premier, alors n est premier.
- LXR Exercise 7 Soit $A, B \in \mathcal{M}_n(\mathbb{K})$. On suppose $A, B \in GL_n(\mathbb{K})$. Montrer que Com(AB) = Com(A) Com(B).

Indication: Rappeler une formule sur la comatrice.

- WWK Exercice 8 Soit $M \in \mathcal{M}_n(\mathbb{Z})$.
 - 1. Justifier que le rang de M est égal au plus grand entier k tel que M admette une sous-matrice carrée de taille k inversible.
 - 2. En déduire que les rangs de M vue comme matrice de $\mathcal{M}_n(\mathbb{C})$, comme matrice de $\mathcal{M}_n(\mathbb{R})$ ou comme matrice de $\mathcal{M}_n(\mathbb{Q})$ sont égaux.
 - 3. \bigstar Soit p premier. On associe naturellement à la matrice M une matrice \overline{M} à coefficients dans $\mathbb{Z}/p\mathbb{Z}$, obtenue en prenant la classe de chaque coefficient de M.

Comparer le rang (sur \mathbb{Q}) de M à celui de \overline{M} (dans $\mathbb{Z}/p\mathbb{Z}$).

- 4. \bigstar Existe-t-il toujours p premier tel que le rang de M sur \mathbb{Q} soit égale au rang de M sur $\mathbb{Z}/p\mathbb{Z}$?
- NGR Exercice 9 \bigstar Soit $A \in \mathcal{M}_n(\mathbb{R})$. On suppose que pour tout $i \in [[1, n]], \sum_{j=1}^n |a_{ij}| \leq 1$. Montrer que $|\det A| \leq 1$.
- H91 Exercice 10 ★

On rappelle qu'une matrice M de $\mathcal{M}_n(\mathbb{Z})$ est inversible d'inverse dans $\mathcal{M}_n(\mathbb{Z})$ si et seulement si det $M=\pm 1$, et qu'on note $GL_n(\mathbb{Z})$ l'ensemble de ces matrices. Soient n entiers a_1,\ldots,a_n .

- 1. Montrer que si a_1, \ldots, a_n sont les coefficients de la première colonne d'une matrice de $GL_n(\mathbb{Z})$, alors ils sont premiers entre eux dans leur ensemble.
- 2. On appelle ici transvection l'opération consistant à retrancher à un des a_i une combinaison des autres à coefficients entiers. Par exemple $(a,b) \mapsto (a-bq,b)$, lorsque n=2. Justifier que par une succession de transvections et de permutations, on peut transformer (a_1,\ldots,a_n) en $(1,0,\ldots,0)$.
- 3. Montrer que si les a_i sont premiers dans leur ensemble, il existe une matrice $A \in GL_n(\mathbb{Z})$ qui admet (a_1, \ldots, a_n) comme première colonne.

Indication: Il est clair que l'on peut trouver une matrirce $A \in GL_n(\mathbb{Z})$ de première colonne $(1,0,\ldots,0)$.