Interro n°27

- A6N Exercice 1 Sur $\mathcal{M}_n(\mathbb{R})$, on pose $\langle A, B \rangle = \text{Tr}(A^T B)$.
 - 1. Que vaut $\langle \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \rangle$?
 - 2. Montrer que $\langle \cdot, \cdot \rangle$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
 - 3. Montrer que $||AB|| \le ||A|| \, ||B||$.
 - 4. En déduire que si $A, B \in \mathcal{S}_n$, alors $\operatorname{Tr}((AB)^2) \leq \operatorname{Tr}(A^2B^2)$
- 3FR Exercice 2 Énoncer et démontrer le théorème de Pythagore, pour n vecteurs d'un espace préhilbertien.

N90 Exercice 3

- 1. Énoncer l'inégalité de Cauchy-Schwarz, dans un espace préhilbertien. Quel est le cas d'égalité? On admet que l'inégalité de Cauchy-Schwarz reste valable pour le crochet $\langle X,Y\rangle=E(XY)$, sur l'ensemble des variables aléatoires sur un espace probabilisé (Ω,P) .
- 2. On définit le coefficient de corrélation de deux variables aléatoires de variances non nulles comme $\rho_{X,Y} = \frac{\text{Cov}(X,Y)}{\rho_X \rho_Y}$. Montrer que $-1 \le \rho_{X,Y} \le 1$.
- 3. Donner sans justifier une CNS pour que $|\rho_{X,Y}| = 1$.

S01 Exercice 4

- 1. Énoncer l'inégalité de Markov.
- 2. Énoncer et démontrer l'inégalité de Bienaymé-Tchebychev.
- 3. Soit $(X_n)_{n\in\mathbb{N}^*}$ une suite de variables indépendantes de même loi $\mathcal{B}(\frac{1}{2})$ et $S_n = \sum_{k=1}^n X_k$. Donner $E(\frac{S_n}{n})$ et $V(\frac{S_n}{n})$ et en déduire que pour tout $\varepsilon > 0$, $P(\frac{S_n}{n} \geqslant \frac{1}{2} + \varepsilon) \xrightarrow[n \to +\infty]{} 0$.
- GJ4 **Exercice 5** Soit (X_n) une suite de variables aléatoires indépendantes de même loi donnée par $P(X_1 = 1) = p$ et $P(X_1 = 2) = 1 p$. On considère, pour $n \in \mathbb{N}$, $S_n = \sum_{k=1}^n X_k$ et, pour $k \in \mathbb{N}$, $Y_k = \min\{n \mid S_n \geqslant k\}$. On admet que, pour tout $k \geqslant 2$ et tout $m \in \mathbb{N}^*$, on a $P(Y_k = m) = pP(Y_{k-1} = m-1) + (1-p)P(Y_{k-2} = m-1)$.
 - 1. Montrer que la suite $u_k = E(Y_k)$ vérifie $\forall k \ge 2, u_k = pu_{k-1} + (1-p)u_{k-2} + 1$.
 - 2. \bigstar En déduire $E(Y_k)$.
- AJC **Exercice 6** Soit E un espace préhilbertien et $x, y \in E$. Montrer que x et y sont orthogonaux si et seulement si $\forall t \in \mathbb{R}, \|x + ty\| \ge \|x\|$.
- HAO Exercice 7 ★ Inégalité de Cantelli.

Soit X, Y deux variables aléatoires réelles.

- 1. Montrer que $E(|X|)^2 \le E(X^2)$, et que $E(|X|)^2 \le E(X^2)P(|X| > 0)$. Indication: Exprimer P(|X| > 0) comme l'espérance d'une variable aléatoire, et utiliser Cauchy-Schwarz.
- 2. On suppose que $E(Y) \ge 0$ et $E(Y^2) \ne 0$. En appliquant la question précédente à une VA judicieuse, montrer que $P(Y>0) \ge \frac{E(Y)^2}{E(Y^2)}$.
- 3. Soit $\varepsilon > 0$, montrer que $P(X E(X) \geqslant \varepsilon) \leqslant \frac{V(X)}{V(X) + \varepsilon^2}$. En déduire que $P(|X E(X)| \geqslant \varepsilon) \leqslant 2\frac{V(X)}{V(X) + \varepsilon^2}$.